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Machine 
Learning



Definition

Application of Artificial Intelligence that provides a system with the ability to learn automatically 
from experience without being explicitly programmed for the given task.

Arthur Samuel - 1959

A computer program is said to learn from experience E with respect to some task T and some 
performance measure P, if its performance on T,  as measured by P, improves with experience E.

Tom Mitchell - 1998

Input
Data

Analyze
Data

Find 
Patterns

Predict
Learn from 
Feedback



Types of Learning

Supervised 
Learning

Unsupervised 
Learning

Reinforcement
Learning

The machine learns from 
labeled data

The machine learns without 
labeled data

The machine learns on its 
own



Supervised Learning

Labels

Data

Model

New Data

Training

It’s an 
Apple!

Prediction



Supervised learning
Unsupervised Learning

Unlabeled Data

Model
Training

Search for a 
pattern



Supervised learning

Reinforcement Learning

Unknown Data

It’s a banana!

New Data

Wrong! Noted

Response LearningFeedback

It’s an 
Apple!

Reinforced 
prediction



Approaches

Supervised 
Learning

Regression

Linear Regression

Used when the output is 
continuous (ex. price of a house)

Classification

Logistic Regression
KNN 

Decision Trees
SVM

Used when the output is 
categorical (ex. Yes or No)



Summary

Machine 
Learning
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Learning

Regression Classification

Unsupervised 
Learning

Reinforcement 
Learning



Regression: Definition

Input variables

Regression Model

145.000€

Size (m2) Price (€)

100 120.000

53 80.000

220 340.000

78 110.000

New Size
131m2

Continuos 
Output Variable



Regression: Linear Regression

House Price Prediction: estimate the price of a house given its size

Size

Price

x

h(x)

ℎ 𝑥 = 𝑤0 + 𝑤1𝑥

We want to fit a line that best approximates the behavior 
of the training data. 

We call this function hypothesis h(x) and it is a function
of 𝒘𝟏 (slope) and 𝒘𝟎 (y-intercept)

→ How can we fit this line? 

Find the values of 𝑤0 and 𝑤1 which minimizes the 
difference between the prediction and the actual values



Regression: Loss and Gradient Descent

Loss Gradient Descent

Squared Error: J(𝑤0, 𝑤1) =
1

2
σ(ℎ𝑤 𝑥 − 𝑦)

2

Changing 𝑤0→ move the line up and down 
Changing 𝑤1→ change the slope

𝑤0

𝑤1

𝐽(𝑤0, 𝑤1)

In the beginning, the line has random 𝑤0 and 𝑤1. 
Gradient descent moves the point (by updating the 
values of 𝑤0 and 𝑤1) in the direction where the 
Loss function decrease. 

This process is repeated until a minimum is 
reached.Should be minimized!

ℎ𝑤 𝑥 = 𝑤0 + 𝑤1𝑥



Classification: Definition

Labeled input 
variables

Classification
Model

Discrete
Output

Fruits

Animals



Classification: Important Terminologies

Keyword Definition

Classifier An algorithm used to map the input data to a specific category

Classification model The model that predicts a class given an input data

Feature An individual measurable property of the observed data

Train The process where the model learn to distinguish between classes

Predict The process where the model make a prediction on unseen data

Binary classification Condition with two outcomes which are either true or false

Multi-class classification Condition with more than two classes where each sample is assigned to one and 
only label

Multi-label classification Condition where each sample is assigned to a set of labels or targets



Classification: Metrics

Training a classifier to predict whether a person is diabetic or healthy (binary output). Four possible outcomes:

True Positive
TP

Pred: diabetic
Correct: diabetic

True Negative 
TN

Pred: healthy
Correct: healthy

False Positive
FP

Pred: diabetic
Correct: healthy

False Negative
FN

Pred: healthy
Correct: diabetic

These are good

These are bad (especially FN)

How many people were 
correctly labeled among all 
the people?

How many of those 
labeled as diabetic are 
actually diabetic?

Of all the diabetic people, 
how many were correctly 
predicted?

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Of all the healthy people, 
how many were correctly 
predicted?



Classification: Logistic Regression

In linear regression, we computed a continuous value (the price of a house given its size). 
In logistic regression, we want to output a discrete value ො𝑦. For example, in a binary problem, given the size of 
a house, we want to build an algorithm that returns 0 if we can afford it and 1 if we can’t.

Size

We can’t 
afford it

We can 
afford it

We need an S-shaped 
function to fit this data

Sigmoid

𝑦 =
1

1 + 𝑒−𝑥



If y = 0→ 𝐽 ො𝑦, 𝑦 = − log 1 − ො𝑦

Classification: Logistic Regression

Starting from the linear regression function ℎ𝑤 𝑥 = 𝑤0 + 𝑤1𝑥, we add a Sigmoid function that squeezes the 
output between 0 and 1, in this way, the system will predict values between 0 and 1 (values > 0.5 will be 
assigned to one class while values < 0.5 to the other): 𝒉𝒘 𝒙 = 𝝈(𝒘𝟎 +𝒘𝟏𝒙)

𝐽 ො𝑦, 𝑦 = −(𝑦log ො𝑦 + 1 − 𝑦 log 1 − ො𝑦 )

If y = 1→ 𝐽 ො𝑦, 𝑦 = − log ො𝑦

When the input y is 0 we want ො𝑦 close as 
0 as possible. The minimum value of 
− log 1 − ො𝑦 is obtained when ො𝑦 =0, 
because − log 1 − 0 = − log 1 = 0

When the input y is 1, we want ො𝑦 close as 
1 as possible. The minimum value of 
− log ො𝑦 is obtained when ො𝑦 =1,  
because − log 1 = 0

Loss function → has to be minimized!

NB: in our case, x has a value 
between 0 and 1, for this reason, 
the minimum value is obtained 
for x = 1 and not for x > 1

x

-log(x)



Classification: KNN Intuition

K Nearest Neighbors
We have a distribution, when a new sample arrives, we assign it to a class looking at the 
classes of the k nearest samples

New sample

We assign it to the
apple class

K = 3

We assign it to the
banana class

K = 1



Classification: Decision Trees Intuition

If we have a distribution like this, 
we can not fit a S-shaped function as we 

showed for logistic regression

Loves 
popcorn

Age
Likes 

cinemas

Yes 7 No

Yes 12 No

No 18 Yes

No 35 Yes

Yes 38 Yes

Yes 50 No

No 83 No

Based on this data, we 
can build a Decision 
Tree that is able to 
return the prediction 
for a new person

Loves 
popcorn?

Age < 12.5?
Does not 

like cinemas

Does not 
like cinemas

Does like 
cinemas

Yes

Yes

No

No



Classification: SVM Intuition

Age

Age

We have just seen that we cannot fit an
S-shaped function to this specific distribution

Support Vector Machine
We represent data in the lowest dimension possible, and with SVM we can add a new axis to the 
data and move the points in a way that makes it relatively easy to draw a straight line that correctly 
classifies people 

Age2

Add y-axis

2

4

Support Vector Machines use 
something called Kernel 
Functions that we can be used 
to systematically find higher 
dimensions’ axis



Deep
Learning



Many features / Big dataset → Classic ML algorithm become inefficient→Alternative: Deep Learning

Introduction

Main idea

Neural networks are algorithms inspired by 
the human brain.

The brain uses just a single learning 
algorithm that can do anything, can we find 
an approximation of what the brain does and 
try to implement it?

Auditory Cortex

Deep Learning is a branch of Machine Learning which utilizes neural network for computation



Neuron

A biological neuron in the brain receives inputs 
from the dendrites, performs some computation, 
and outputs the result through the axons

Dendrite

Axon

x2

x3

x1

z f

w1

w3

w2

Linear
function

Non-linear 
activation function

hw(x)

An artificial neuron tries to mimic its behavior:
it receives some inputs (x1, x2, x3), computes a linear 
function operation using weights (w1 ,  w2 , w3)

and applies a non-linear activation function to 
formulate the hypothesis

𝑧 = 𝑤1𝑥1 + 𝑤2 𝑥2+ 𝑤3 𝑥3

ℎ𝑤 𝑥 = 𝑔(𝑧)



A neural network is a group of these neurons.

Each neuron has a linear combination of inputs 
and weights and then applies non-linear activation, 
for example, for the first layer:

Neural Network

x1

x2

x3

a1
(1)

a2
(1)

a3
(1)

a4
(1)

hw(x)

Input 
Layer

Hidden 
Layer

Output 
Layer

Notation
an

(k) 
→ n indicates the neuron and k the    

layer
wij

(k)
→ i is the index of the neuron of the 

input layer, j the index of the 
hidden layer, and k is the layer 

a1
(1) = 𝑔(𝑤11

(1)𝑥1 +𝑤21
(1)𝑥2+ 𝑤31(1) 𝑥3)

a2
(1) = 𝑔(𝑤12

(1)𝑥1 +𝑤22
(1)𝑥2+ 𝑤32

(1)𝑥3)

w11
(1)

w12
(1)

w14
(1)…

Fully Connected Network (FCN)



A neural network is a group of these neurons.

Each neuron has a linear combination of inputs 
and weights and then applies non-linear activation, 
for example, for the first layer:

Neural Network

x1

x2

x3

a1
(1)

a2
(1)

a3
(1)

a4
(1)

hw(x)

Input 
Layer

Hidden 
Layer

Output 
Layer

Notation
an

(k) 
→ n indicates the neuron and k the    

layer
wij

(k)
→ i is the index of the neuron of the 

input layer, j the index of the 
hidden layer, and k is the layer 

a1
(1) = 𝑔(𝑤11

(1)𝑥1 +𝑤21
(1)𝑥2+ 𝑤31(1) 𝑥3)

a2
(1) = 𝑔(𝑤12

(1)𝑥1 +𝑤22
(1)𝑥2+ 𝑤32

(1)𝑥3)

w11
(1)

w12
(1)

w14
(1)…

Fully Connected Network (FCN)

Non-linear activation 
functions make neural 
networks flexible and 
able to fit just about any 
data



Neural Network

x1

x2

x3

a1
(1)

a2
(1)

a3
(1)

a4
(1)

a1
(2)

hw(x)

Each w(k) is a matrix of weights that controls the 
mapping from layer k to layer k+1

For the second layer:

a4
(2)

a3
(2)

a2
(2)

a1
(2) = 𝑔(𝑤11

(2)
a1

(1) + 𝑤21
(2)a2

(1)+ 𝑤31(2)a3
(1) + 𝑤41(2)a4

(1))

w11
(2)

w44
(2)

And finally:

h = 𝑔(𝑤11
(3)a1

(2) + 𝑤21
(3)a2

(2)+ 𝑤31(3)a3
(2) +𝑤41(3)a4

(2))

…



Neural Network Classification

… 6

28

28

28x28 = 784 neurons

Input layer Outputn hidden layer

Softmax

Softmax is a function used for multiclass classification that turns a 
vector of K real values into a vector of K real values that sum to 1

[2.33, -1.46, 0.56] [0.83, 0.01, 0.14] 
Softmax

MNIST
10 handwritten 

digits



Neural Network Training

…

28

28

Input layer Outputn hidden layer

Softmax

One of the most used functions for multi-class classification is cross-entropy loss, defined as:

Label

Loss

𝐶𝐸 = −

𝑖

𝑦𝑖 log( ො𝑦𝑖)

𝑦𝑖 is the label vector with one-hot encoding, meaning that the number “6” is coded as [0 0 0 0 0 0 1 0 0 0].
ො𝑦𝑖 is the (wrong) prediction after the Softmax, let’s say [0.01, 0.02, 0.11, 0.70, 0.01, 0.08, 0.03, 0.01, 0.02, 0.01], 
which is actually a “3”.

Thus, CE will be equal to -log(0.03) as all the other values are multiplied by 0. Given the minus sign, in 
minimizing this function, we are trying to maximize the 6th value in the output vector.



Gradient Descent & Backpropagation

As we already said, the loss function represents how much the prediction is similar to the actual values. 
For this reason, the more we minimize the loss function, the more the prediction will be accurate. To do 
this, we need two powerful tools: gradient descent and backpropagation.

w

Loss J(w)

Optimization: we want to find the value of w which minimizes 
J(w). To do this, we will update w at each step by the quantity:

1

min

2 𝑤 = 𝑤 − 𝛼
𝑑𝐽(𝑤)

𝑑𝑤

𝛼 is the learning rate, which is a parameter that determines how big 
the steps are in the direction of the minimum.
𝑑𝐽(𝑤)

𝑑𝑤
is the derivative of J(w) with respect to w, i.e., the slope. Thus, if 

we are in 1, the slope is negative, so −𝛼
𝑑𝐽 𝑤

𝑑𝑤
will be a positive value, 

meaning that we are increasing w in the direction of the minimum. 

On the contrary, if we are in 2, the slope is positive, so −𝛼
𝑑𝐽 𝑤

𝑑𝑤
will 

be a negative value, meaning that we are decreasing w in the 
direction of the minimum.

Backpropagation is the technique 
that allows to compute the 
derivative of the loss with respect to 
the parameters.



Neural Network Overview

…

28

28

Input layer Outputn hidden layer

Softmax

Label

Loss

In summary, during training, we take an image (or more than one, i.e., a batch), pass it through the network, 
and make a prediction. We use the prediction and the actual label to compute the loss. We then use 
backpropagation to compute the derivative of the loss with respect to all the weights. Finally, we apply 
gradient descent to adjust the value of the weights in the direction of the minimum. This process is repeated 
until the minimum (or a local minimum) of the loss is reached, meaning that the network has (hopefully) 
learned to distinguish the different classes.

Reminder: all this works with 28 × 28 × 1 images, which can be flattened to just 784 neurons. But if we use high-res 
images, such as 1920 × 1080 × 3, the input layer should have around 6 million neurons, becoming computationally 
infeasible



Important Terminologies

Keyword Definition

Batch The set of samples used in one iteration (that is, one gradient update) of training

Epoch A full training pass over the entire dataset such that each example has been seen 
once

Learning rate The size of the steps of the gradient descent algorithm

Overfitting The model matches the training data so closely that it fails to make correct
predictions on new data

Underfitting The model has poor predictive abilities because it hasn't captured the complexity 
of the training data

Test/Train/Validation The three subsets in which the main dataset is usually divided

Regularization Techniques which penalize the model complexity and prevent overfitting

Transfer Learning Transfer information from one model trained on a task into another task

Hyper-parameters Not learnable parameters, such as learning rate, number of epochs, etc.



Convolutional Neural Network

Using neural networks with images has two main disadvantages:
1. Too much computation
2. They are sensitive to the location of an object in an image (if we move the object, the NN may be not 

able to recognize him)

How does the human brain recognize images?

Loop circle pattern

Vertical line

It’s a 9!

This approach is 
replicated with filters in 
Convolutional Neural 

Networks

1 1 1

1 -1 1

1 1 1

-1 1 -1

-1 1 -1

-1 1 -1

Filters to recognize loops and vertical lines



Convolutional Neural Network
A CNN is an algorithm that can take in an input image and apply filters that, during training, learn to distinguish 
various aspects/objects in the image

Compared to training a network with flattened images as before, with CNNs is possible to capture the
Spatial dependencies in an image. The architecture better fits the image dataset due to the reduction in 
the number of parameters involved and shared weights.

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 0 1

0 1 0

1 0 1

4 4 3

2 4 3

2 3 4

1 ∗ 1 + 1 ∗ 0 + 1 ∗ 1 + 0 ∗ 0 + 1 ∗ 1 + 1 ∗ 0 + 0 ∗ 1 + 0 + 0 ∗ 0 + 1 ∗ 1 = 4

Input

Filter Output

Convolution Pooling

20 30

70 37

13 8

30 20

Max

Average

12 20 30 0

8 12 2 0

34 70 37 4

11 5 25 12

Extract features Reduce size



Convolutional Neural Network
Filters are location invariant feature detectors (the loopy circle is detected wherever it is in the image).
In the illustrations below, the highlighted part in the output are the neurons activated by a loop circle 
in the input image

In CNN, these filters are not hardcoded as in this example but learned during training

1 1 1

1 -1 1

1 1 1

1 1 1

1 -1 1

1 1 1

1 1 1

1 -1 1

1 1 1



Convolutional Neural Network

28 × 28 × 1 28 × 28 × 𝑛1 14 × 14 × 𝑛1 14 × 14 × 𝑛2 7 × 7 × 𝑛2

1

0

2

9

Convolution
𝑛1 kernels 

of size 5 × 5

Pooling

size 2 × 2

Convolution
𝑛2 kernels 

of size 5 × 5 × 𝑛1

Pooling

size 2 × 2

FCN
𝑛3 neurons 

𝑛3

In the first convolution layer, you slide each of the 𝑛1 filters (with a step 
size named stride) over the 28 × 28 × 1 input and compute the convolution 
operation. This results in an output of size 28 × 28 × 𝑛1. The height and 
width are the same because we used padding (dashed external square) 
and 𝑛1 is the depth dimension, as we are using 𝑛1 filter and each filter 
produces a 28 × 28 output. The pooling operation simply halves both the 
height and the width.

The role of the 
Convolution and 
Pooling layers is to 
reduce the images and 
extract features 
without losing 
information which is 
critical for getting a 
good prediction. The 
final FCN learns to 
handle the variety (in 
position, shape, etc.) of 
the high-level features 
extracted with the first 
part of the network.

Classification
10 neurons 



Case Study:
Coding a CNN



Coding a CNN

We are now going to implement and train the network below. 
A Google Colab file is available here to reproduce the results.

Five main steps:

1. Load the dataset
2. Define the CNN
3. Create the CNN and 

the optimizer
4. Train the model
5. Test the model

NB: teaching Python and PyTorch is outside the scope of this 
lesson. For this reason, the code will be discussed in the form 
of pseudocode, to understand the general behavior without 
focusing too much on the implementation

https://colab.research.google.com/drive/1Ga6q6b0os3Qz04Ed9Ih-CB0QSrcqPkeU?usp=sharing

